Analyst silicon field trip
March 28, 2007

Silicon Materials
Wafers
Cells
Modules

Renewable Energy Corporation
Disclaimer

This Presentation includes and is based, inter alia, on forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. These statements and this Presentation are based on current expectations, estimates and projections about global economic conditions, the economic conditions of the regions and industries that are major markets for REC ASA and REC ASA’s (including subsidiaries and affiliates) lines of business. These expectations, estimates and projections are generally identifiable by statements containing words such as "expects", "believes", "estimates" or similar expressions. Important factors that could cause actual results to differ materially from those expectations include, among others, economic and market conditions in the geographic areas and industries that are or will be major markets for REC’s businesses, energy prices, market acceptance of new products and services, changes in governmental regulations, interest rates, fluctuations in currency exchange rates and such other factors as may be discussed from time to time in the Presentation. Although REC ASA believes that its expectations and the Presentation are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the Presentation. REC ASA is making no representation or warranty, expressed or implied, as to the accuracy, reliability or completeness of the Presentation, and neither REC ASA nor any of its directors, officers or employees will have any liability to you or any other persons resulting from your use.

This presentation was prepared in connection with the field trip March 28, 2007. Information contained within will not be updated. The following slides should be read and considered in connection with the information given orally during the presentation.

The REC shares have not been registered under the U.S. Securities Act of 1933, as amended (the "Act"), and may not be offered or sold in the United States absent registration or an applicable exemption from the registration requirements of the Act.
The world’s most integrated solar energy company

Silicon Materials
- Chemical process

Wafers
- Casting and cutting

Cells
- Surface treatment
- Assembly
- Installation and operation

Modules
Full-year 2006 performance

<table>
<thead>
<tr>
<th>Divisions</th>
<th>REC Silicon</th>
<th>REC Wafer</th>
<th>REC Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 Production</td>
<td>5 600 MT polysilicon</td>
<td>275 MW multicrystalline</td>
<td>37 MW cells</td>
</tr>
<tr>
<td></td>
<td>8 000 MT monosilane</td>
<td>31 MW monocrystalline</td>
<td>33 MW modules</td>
</tr>
<tr>
<td>2006 vs. 2005</td>
<td>+6%</td>
<td>+37%</td>
<td>+100%</td>
</tr>
<tr>
<td>2006</td>
<td>NOK 2 128 mill</td>
<td>NOK 2 456 mill</td>
<td>NOK 873 mill</td>
</tr>
<tr>
<td>Revenues</td>
<td>NOK 1 063 mill</td>
<td>NOK 825 mill</td>
<td>NOK 194 mill</td>
</tr>
<tr>
<td>EBITDA</td>
<td>~6 000 MT polysilicon</td>
<td>~465 MW multicrystalline</td>
<td>~50 MW cells</td>
</tr>
<tr>
<td>2007 target production</td>
<td>~9 000 MT monosilane</td>
<td>~35 MW monocrystalline</td>
<td>~45 MW modules</td>
</tr>
</tbody>
</table>

© Copyright 2007 Renewable Energy Corporation ASA
The Solar Industry
Solar energy development forecast

- Unlimited renewable source of supply
- Increasingly cost competitive
- Decentralized power source
- Peak power at peak time of usage
- Environmentally friendly

Declining stock of fossil fuels, climate changes and increasing competitiveness of PV systems will boost usage of solar energy over the next century

Source: solarwirtschaft.de

© Copyright 2007 Renewable Energy Corporation ASA
Cost competitiveness of PV electricity

900 hrs/year: ~0.50 €/kWh

1,800 hrs/year: ~0.25 €/kWh

Source: REC, based on EC Vision Report 2005 (EPIA: Towards an Effective Industrial policy for PV (RWE Schott Solar))
Energy price development triggers strong demand for solar energy

Average electricity prices for retail customers (€/kWh)

CA residential electricity price (€/kWh) and demand

Source: Respective national energy departments, REC estimates

Source: PGE, CEC
Our ambition is to generate strong and profitable growth, at least in line with the high-growth photovoltaic solar market. REC aims to achieve this by further expanding capacity and introducing new technologies across all our businesses.
Three main focus areas...
1. Aggressive growth ambitions - view of ~2010

<table>
<thead>
<tr>
<th>Polysilicon</th>
<th>Wafers</th>
<th>Cells</th>
<th>Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>New capacity in progress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 500 MT (~865 MW) Granular material</td>
<td>~650 MW expansion Herøya III & IV</td>
<td>~500 MW opportunity</td>
<td></td>
</tr>
<tr>
<td>1 000 MT (~135 MW)</td>
<td>~100 MW productivity gains</td>
<td>~180 MW</td>
<td>~55 MW</td>
</tr>
<tr>
<td>6 000 MT (~800 MW)</td>
<td>~580 MW</td>
<td>~45 MW</td>
<td>~45 MW</td>
</tr>
<tr>
<td>1 450 MT allocated to EverQ expansion (33.3% owned)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 000 MT allocated to electronics customers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional revenue and profit growth contributed by increased silane gas sales
2. On track with the targeted cost program

- **REC Silicon targets ~60 percent reduction in polysilicon cost input**
 - Main benefits will be derived from the FBR-plant and lower consumption

- **REC Wafer targets ~50 percent reduction in wafer conversion cost**
 - Achieved ~15 percent in 2006
 - Further advanced technologies to be implemented in new production lines

- **REC Solar targets significant reduction in cell and module cost input**
 - Achieved ~10 percent in cell and ~5 percent in module in 2006
 - Further advanced technologies to be implemented in new production lines

Note 1: Cost structure as cost per watt of modules, based on world class production 2005

Note 2: Cost structure as cost per watt of modules, relative to 2005 level
3. REC Group organization development

- REC Solar Grade Silicon
- REC Advanced Silicon Materials
- REC ScanWafer
- REC SiTech
- REC ScanCell
- REC ScanModule

→ BU focus and organization build up in each division to ensure autonomy and growth
REC Group outlook – 2007 targets

➤ Continued focus on cost improvements

➤ Execution of expansion programs
 – **REC Silicon**: Construction of FBR-plant; debottlenecking program at Butte
 – **REC Wafer**: Continue ramp-up of the new 200 MW plant; begin construction of the two new plants of 650 MW
 – **REC Solar**: Ramp-up first phase of 180 MW cell expansion in Narvik and 55 MW module expansion in Glava
 – **EverQ**: Complete ramp-up of additional 60 MW expansion

➤ Pricing outlook on a full year basis
 – **REC Silicon** – increase of above 15 percent
 – **REC Wafer** – increase of above 10 percent
 – **REC Solar** – reduction of up to 5 percent

![2007 production growth in percent](image)

Note: Polysilicon production measured in MT. Wafers, cells and modules in MW
REC Silicon

<table>
<thead>
<tr>
<th>Chemical process (purification)</th>
<th>Coating and cutting</th>
<th>Surface treatment</th>
<th>Assembly</th>
</tr>
</thead>
</table>

REC Silicon produces silicon materials for the electronics and the photovoltaic markets

REC Silicon is a large player in the global silicon materials industry

- #1 producer of polysilicon for photovoltaic applications
- #1 in monosilane gas production
- #3 in overall polysilicon production
REC Silicon – organization

Gøran Bye
President
Chief Executive Officer

Tor Hartmann
Senior Vice President
Expansions

Terie Ellis
Senior Vice President
Finance

Bruno Ceccaroll
Director
Research & Development

Ron Reis
Vice President
Technology & Quality

Dave Seburn
Vice President
Operations

Kurt Levens
Vice President
Sales, Marketing & Business Development

Dean Martinez
Director
Administration

Kent Stephens
Director
Health, Safety & Environmental Affairs

Production Plant
Moses Lake

Production Plant
Butte

Sales Office
Tokyo

Sales Office
Shanghai

Employees
2006 ~500
2007 ~600
<table>
<thead>
<tr>
<th>Year Range</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983 to 1984</td>
<td>Construction of Moses Lake Plant by Union Carbide Corp.</td>
</tr>
<tr>
<td>1990</td>
<td>Moses Lake Plant purchased by Komatsu Ltd., creating Advanced Silicon Materials Inc. (ASiMI)</td>
</tr>
<tr>
<td>1996 to 1998</td>
<td>Construction of Butte Plant</td>
</tr>
<tr>
<td>2002</td>
<td>Moses Lake plant becomes Solar Grade Silicon LLC via Joint Venture between Komatsu and REC</td>
</tr>
<tr>
<td>2005</td>
<td>ASiMI purchased by REC, creating REC Silicon</td>
</tr>
<tr>
<td>2006</td>
<td>REC Silicon breaks ground on third polysilicon plant, Moses Lake, USD 600 million, and decides to invest USD 50 million in Butte plant</td>
</tr>
<tr>
<td>2007</td>
<td>REC Silicon decides to invest USD 50 million in long lead items for further expansion</td>
</tr>
</tbody>
</table>
Current polysilicon production process

1: Mg-Si

2: Silane

3: Silane sold to PV, LCD, thin film

4: Most silane used for polysilicon

5: Siemens process at high temperature

6: Rods

7: Rod pieces

8: Loaded ingot crucible

Field trip
March
27-29, 2007

© Copyright 2007 Renewable Energy Corporation ASA
Value creation at REC Silicon

Silane gas refinery

- Metallurgical Grade Silicon (98 to 99% pure)
- Monosilane gas (SiH₄)

Gas distributors

- Electronic semiconductor manufacturers
- LCD panel manufacturers
- Thin-film cell manufacturers
- Crystalline silicon cells manufacturers

- Ingot & wafer manufacturers

Siemens reactor based polycrystalline silicon deposition process

© Copyright 2007 Renewable Energy Corporation ASA
Growth & cost initiatives: New granular polysilicon plant

- Plant capacity ~ 9,000MT Silane and ~ 6,500 MT granular polysilicon
- Project is on plan
 - Ground-breaking in August 2006, construction commenced in 2007
 - Online in second half 2008

Expansion site

REC Solar Grade Silicon LLC,
Moses Lake, Washington
Growth & cost initiatives: New granular polysilicon plant
Growth & cost initiatives:
De-bottlenecking in the Butte plant

- Increasing peak capacity and reliability of the silane unit
- Modifying around 1/3 of the poly deposition reactors (Siemens)
 - Increased polysilicon deposition rate through rebuild of gas circulation
- Investment: USD 50 million
- Additional 2,000 MT of silane gas
 - ~1/3 dedicated to the merchant market
- ~1,000 MT additional polysilicon
- Reducing cost significantly
 - Up to 50% lower electricity consumption in the polysilicon deposition
 - Close to 20% reduction on total cost
- Full effect from the end of Q2 2008
Polysilicon cost roadmap 2005 - 2010

- New plant with granular and scaled-up silane processes will almost halve the (full) cost

- Thinner wafer, thinner wire and higher cell efficiency contribute further

- Status
 - FBR plant currently being built
 - Group’s silicon consumption per Wp rapidly declining
 - Potential beyond "2010 roadmap" identified
Large savings in both silane and FBR process

- Silane costs declining due to scale and optimization
- Granular energy consumption is 80-90% below typical Siemens process
 - Hot wall design versus cold wall which draws off energy
 - Granular cost saving is increasing with increasing electricity prices
- Capital and labor cost reduced due to continuous processes

![Reduction in polysilicon cost per kg](chart.png)
Result of the growth strategy

- De-bottlenecking and construction will continue 2007 – 2009
- Impact on performance
 - Start-up and ramp-up cost
 - ‘Unusual’ timing of smaller production shut-downs to accommodate tie-ins and implementation of new technology
 - Difficult to guide on exact timing
- Additional capacity extensions in progress
 - Ordered long lead items (USD 50m)
 - Additional silane gas production
 - Further modification of Siemens Rxs
 - Exploit demonstrated increased productivity and yield in FB Rxs

Polysilicon production

MT/Year

- Siemens process
- Fluidized Bed process
- Planned addition

2005 2006 2007 2008 2009 2010
Several technologies are in play today for producing PV wafers/cells

- Upgraded MGS
 - Elkem, Dow Corning, JFE, Nippon Steel, Becancour, Ferro Atlantic, Scheuten, Solar Value…

- Siemens:
 - Silane: REC Silicon
 - Trichlorosilane: Hemlock, Wacker, Tokuyama, MEMC, numerous new entrants

- Fluid Bed:
 - Silane: MEMC, REC Silicon – in production / building full scale plant
 - Trichlorosilane: Hemlock, Wacker – status is uncertain

- Thin Films
 - Silane based: Applied Materials, Oerlikon, UniSolar, Kaneka, Mitsubishi Heavy Industries, CSG Solar…
 - Copper Indium Gallium diSelenide based: Nanosolar, Heliovolt…
 - Cadmium Telluride based: First Solar…
 - Organic: in development
Silicon Technologies

Upgraded MGS

- **Cost Projection:** $<USD 20/kg1\$
- **Quality Projection:** Typical resultant cell efficiency around 15% 1
- **Global Capacity Projection:** 5,000 MT/year mid 2008; 35,000 MT indicated in 2011

Slag Refining

Leaching

Solidification

\[1\text{ From ORKLA Investors Presentation 27-October-2006 on Elkem Solar}\]
Silicon Technologies

Siemens

- Cost: Ranges USD 25 – USD 45/kg (what will cost be for new entrants?)
- Quality: Highest purity polysilicon, basis for typical and high efficiency cells
- Capacity: Roughly 35,000 MT globally in 2006; growing significantly by 2011: 175,000 MT announced, planned and rumored
Silicon Technologies

Fluid Bed

- Cost: <70% of Siemens/kg (REC Silicon)
- Quality: Demonstrated commercial cell efficiency both internally and externally (REC Silicon); also potential for electronics use (already used by MEMC)
- Capacity: ~13,000 MT worldwide by 2009
Silicon Technologies

➔ Thin Film

- Cost: Averages 800 kg of silicon per MWp
- Quality: Scale demonstrated efficiencies at 10%, CSG Solar micro-crystalline module
- Capacity: 2006: ~125 MW per year, but larger facilities under construction: >1 GW in 2011

Photo courtesy of CSG Solar
Silicon Technologies – why so many different initiatives?

Process steps in the value chain

- Mining Quartz coal
- MGS
- Silane
- Poly
- Melting
- Crystal
- Sawing
- Cell processing

- Current technology (and business) chain is fragmented
- Batch to batch, not continuous
- Considerable loss of energy and materials (within and between the steps)
- Cost decrease calls for simplification and re-engineering
REC Silicon’s technology is superbly positioned
Silane gas is the starting point

- Silane: one silicon atom attached to four hydrogen atoms

- Purest form of silicon in the world. Purity measured to single digit parts per trillion for some elements (phosphorous, boron, etc)

- Our process chemistry seems simple, and is:
 - Si (98% pure) + STC + H2 \rightarrow TCS
 - TCS \rightarrow SiH4 (internally recycles chlorosilanes)
 - SiH4 \rightarrow Si (pure) + 2 H2
Silane to polysilicon technology

- Silane closed loop and "green" process

- **Input:**
 - Metallurgical silicon

- **Output:**
 - Silane gas

- **Recycles**
 - Chlorosilanes
 - Hydrogen

- Highly efficient, consumes all raw materials with no need for off site reprocessing
Trichlorosilane to polysilicon technology

- **TCS open loop process**

- **Input:**
 - Metalurgical silicon, hydrochloric acid (HCL)

- **Output:**
 - 1 part silicon
 - 1 part hydrochloric acid
 - 1 part silicon tetrachloride

- Less efficient, typically external recycling of byproducts

Silicon from Trichlorosilane process

- **Separation**
 - TCS Distillation
 - Polysilicon

- **Crude TCS**
 - Hydrochlorination
 - MGS, Hydrogen Chloride

- **TCS**
 - HCl, STC

© Copyright 2007 Renewable Energy Corporation ASA
REC Silicon’s silane technology is based upon knowledge

⇒ Intellectual Property

<table>
<thead>
<tr>
<th>Effect</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 85 issued or pending patents for silane and silane based polysilicon technology</td>
<td>Freedom to operate = lowest cost</td>
</tr>
<tr>
<td>On-going research into core technology: US and Norway</td>
<td>Lowest manufacturing cost, new silane derivatives</td>
</tr>
<tr>
<td>Proprietary operational and maintenance practices</td>
<td>Reliability, safety, lowest cost</td>
</tr>
<tr>
<td>Experience: Over 25 years operating silane to polysilicon plants and >500 trained, knowledgable employees</td>
<td>Reliability, safety, lowest cost</td>
</tr>
</tbody>
</table>
Silane requires careful handling

Safety issues:
- Silane is a pyrophoric gas.
- Chlorosilane intermediaries (TCS; DCS; MCS) are corrosive and flammable.

Safety focus:
- 25 years of experience, including some very difficult lessons in the hazards of this business.
- On-going research into materials characteristics, fundamentals of reactivity and product safety.
- Provide support services to all customers on silane safety and product handling.
- Proprietary knowledge in equipment design and operation for silane and polysilicon manufacturing are being incorporated into REC Silicon III plant.
- Awarded 2006 Air Liquide Global Supplier of the Year for Safety.
Indirect sales channel for Silane

REC Silicon’s silane sales is a small part of the gas companies’ overall business but a healthy 10-20% of their specialty gas trade
- The silane gas is sold in bulk (3-6 MT) to the specialty gas operations of major gas companies, which trans-fill the gas to smaller containers (1-250 Kg)
- Silane and other specialty gases, chemicals and services are sold to end-users as a “package”

Pricing strategies have encouraged gas companies to buy from REC Silicon while entry barriers have discouraged new competitors from entering
- Unique competitive advantages: Scale and delivery ability, precision and technical support
Polysilicon Deposition Technology

- Fluid Bed energy consumption is significantly less than Siemens process:
 - Continuous process versus batch processing
 - Hot Wall design versus cold wall which draws off energy
- Demonstrated pilot unit, qualified by PV customers
- REC has invested over 10 years of research in silane based fluid bed deposition, culminating in a successful process.
Fluidized Bed Reactor less favorable with TCS

- Silane is a preferred choice for fluidized bed polysilicon deposition reaction
 - Readily decomposes with low energy demand to silicon and hydrogen only
 - No competing counter reactions such as can be found with TCS: hydrochloric acid gas resulting from TCS decomposition can attack formed silicon, lowering total yields

- Granular polysilicon quality can be very pure, even acceptable for semiconductor purposes
Critical success factors - fluidized bed development

<table>
<thead>
<tr>
<th>Success factors</th>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control powder formation to avoid plugging</td>
<td>Nozzles optimized and patented</td>
<td>Productivity</td>
</tr>
<tr>
<td>Control powder formation to maximise yield</td>
<td>Nozzles optimized and patented</td>
<td>Yield</td>
</tr>
<tr>
<td>Pure, low cost seeding of small granules</td>
<td>Self-seeding technology developing.</td>
<td>Cost and product purity</td>
</tr>
<tr>
<td>Long production runs</td>
<td>Continuous optimisation</td>
<td>Productivity and yield</td>
</tr>
<tr>
<td>Purity</td>
<td>Careful material choices & procedures</td>
<td>Product purity</td>
</tr>
</tbody>
</table>

Field trip
March 27-29, 2007
Energy costs are major factor in polysilicon deposition technologies.

Fluid Bed technology reduces this cost by approximately a factor of 10, because:

- No need for traditional Siemens “cold wall” design which draws energy out of the process and results in inefficiencies.
- Continuous process versus batch which more efficiently utilizes input energy.
FBR Technology at REC Silicon

- REC Silicon continues to run granular test production
 - More process experience gained while producing qualifying material through 2007
 - Final verification of product quality achieved with very good results
 - Maintaining development program to improve this core technology

- Construction of the new plant is progressing on schedule
 - The plant will have a capacity of ~ 9,000MT Silane and ~ 6,500 MT polysilicon
 - The plant will come online in 2008 Q3 with six to nine months of ramp-up

- REC Silicon and its predecessor have worked on developing the technology since mid 1990’s
 - It is a proven technology
 - REC is already working on next generation FBR
Silicon Materials – the supply side

Renewable Energy Corporation

Silicon Materials

Wafers

Cells

Modules
Announced, planned and rumored supply of silicon materials until 2011

Polysilicon supply by type of product

Polysilicon supply by industrial player

Tier One - incumbent polyproducers
Tier Two - players with metals, chemicals or silicon experience
Tier Three - wildcards
Silicon materials fungibility

<table>
<thead>
<tr>
<th>REC Silicon</th>
<th>Multi Cast</th>
<th>Mono</th>
<th>Multi emc</th>
<th>Ribbon</th>
<th>Spherical Cells</th>
<th>Thick Films</th>
<th>Thin Films</th>
</tr>
</thead>
<tbody>
<tr>
<td>uMGS</td>
<td>YES</td>
<td>?</td>
<td>?</td>
<td>no</td>
<td>Yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Silane</td>
<td>YES</td>
<td>YES</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Chunk Poly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TCS?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silane</td>
<td>yes</td>
<td>YES</td>
<td>YES</td>
<td>yes</td>
<td>yes</td>
<td>YES</td>
<td>no</td>
</tr>
<tr>
<td>Granular Poly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silane</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>YES</td>
<td>no</td>
</tr>
<tr>
<td>Powder</td>
<td>no</td>
<td>no</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Silane</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>YES</td>
</tr>
<tr>
<td>as gas</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>TCS/DCS as gas</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

© Copyright 2007 Renewable Energy Corporation ASA
Silicon materials demand development

- Strongest driver will continue to be the growth of PV
 - Long term growth dependent on solar power becoming competitive
 - Potentially very large demand for silicon materials even though Si g/Wp will continue to decrease
 - Relationship between short term PV-growth and demand for silicon materials will be “non-linear” due to value chain inefficiencies
 - Large underutilized downstream capacity
 - Close to non-existent silicon inventories
 - Contracted volumes versus actual timing of new production and financial viability of purchasers

- But don’t forget the electronic segment
 - Prognosticators say electronics demand will be higher than earlier expected
 - Accelerated blurring of the borders between electronics and PV

- Increasing importance of materials purity
 - The quest for higher efficiency cells and modules will trickle down to silicon purity

- Silicon value chain as well as silicon “form factor” likely to evolve
 - Polysilicon chunk versus particulate silicon versus silicon gases
The best positioned suppliers will be characterized by:
- Cost of production
- Quality of customers and relationships
- Contract structure
- State of technology and IPR
- Fungibility of the silicon products
Thank you